
Generalizes across task variations and object properties. Extends from state-based 
demonstrations to observation-based policy.
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Environments

Learned Dynamics

LfD Method

Trajectory Optimization

• Deformable Manipulation from Demonstrations (DMfD) [1], an off-policy actor-critic method 
for RL + LfD that balances exploration with exploitation. 

• Uses advantage-weighted samples in replay buffer, to encourage policy to stay close to 
stored demo states, similar to AWAC [2]. 

• Entropy regularization to explore online, similar to SAC [3]. 

• You can choose any LfD or RL + LfD method.

• Cross-Entropy Method (CEM) with the 
learned model for dynamics. 

• Objective function: Match the object’s 
goal state in the demonstration 

.∥sgoal − sH∥2

• CNN-LSTM-based forward dynamics 
model or Transformers. 

• Objective: Minimize error in particle 
displacements .∥ΔPsim − ΔPpred∥2

Prior Learning from Demonstrations (LfD) cannot handle large morphological mismatches 
between expert and student. 

Morphological Adaptation in Imitation Learning (MAIL) is a cross-morphology LfD method 
that can handle such mismatches, even with suboptimal teacher demonstrations.
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THREEBOXES 

Rearrange boxes along a line

State : xyz of each particle that is used to represent object. 

Action : pick (xyz) and place (xyz).
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DRYCLOTH 

Pick & hang dry a cloth

CLOTHFOLD 

Fold a cloth in half 
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Teacher demos: 3 pickersMAIL can learn a 
policy for agents with 

 end-effectors from 
teachers with  end-
effectors, shown in this 
rearrangement task.

M
N Final policy: 2 pickers

Final policy: 1 picker

Final policy: Franka robot
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